
Loading a 32 bit Immediate

Introduction

Is it possible to load a 32 bit immediate to a register? Immediate implies the

constant is part of the instruction. Let's forget, for a moment, that none of the

MIPS instruction formats support 32 bit constants. Is it possible for any ISA

that uses 32-bit instructions to load an arbitrary 32 bit immediate value to a

register?

Of course, by phrasing the question in that way, I'm giving away the answer. If

the instruction must be 32-bits, there's no way to do it. First of all, if all 32 bits

are used for the immediate, where are the bits for the opcode? Where are the

bits to indicate which register to place the immediate value? This information

also has to be there, but there's no space.

Notice it's important that we say arbitrary 32 bits. Clearly, you can load a 32

bit quantity using addi, but since addi uses a 16 bit quantity (which is then

sign-extended to 32 bits), there's only 216 different 32-bit quantities you can

store, not the full 232 you'd normally expect with a 32-bit immediate value.

Even if you left everything implicit, for example, you assumed you were

always using register 1, and you assumed that the 32-bit immediate value was

always loaded in that register, then, you'd be saying no other instructions are

possible.

Since there's no way to do it one instruction, is there a way to do it in two

instructions?

Loading 32 bit Immediates in Two Instructions

There's a MIPS instruction called lui which stands for "load upper immediate".

The instruction looks like:
lui $rt, immed

This is an I-type instruction. $rs is unused in this instruction.

The semantics are:

R[t] = IR15-0 016
It loads the upper 16 bits of R[t] with the 16 bit immediate, and the lower 16

bits with all 0's.

One possiblility for loading a 32 bit constant, say, 0x0123abcd is:

lui $r1, 0x0123

addi $r1, $r1, 0xabcd
However, this has problems. In particular, recall that addi sign-extends. If the

immediate value is negative, then the upper 16 bits will be all 1's, and adding

this will ruin the upper 16 bits.

One solution is to use ori

lui $r1, 0x0123

ori $r1, $r1, 0xabcd
ori zero-extends the immediate value. It also takes advantage of the fact that

the low 16 bits of the register is all 0's. Thus, using bitwise OR is like adding, if

there is no carry. Since you are adding 0x01230000 (which is

what $r1 contains after the lui instruction) to 0x0000abdc (which is the zero-

extended immediate of the ori instruction), there's no carries, thus ori behaves

like unsigned addition.

The other possibility is to use addiu which adds, but does so by zero-extending

the immediate instead of sign-extending it.

Using $at

The pseudo instruction, li $rt, immed loads an immediate value to a register.

This can be a 32 bit value. Such an instruction is translated to:
lui $at, 0x0123

ori $at, $at, 0xabcd

where $at is actually register $r1. This register is used by the assembler for

translating pseudoinstructions to real instructions. After all, when the assembler

does this translation, it wants to avoid clobbering other registers. $at is reserved

specifically for this purpose.

If the immediate value is written in base 10, then the assembler must represent

it as a 32 bit 2C binary number, then split the high 16 bits for the lui instruction

and the low 16 bits for the ori instruction.

Machine Code Representation

lui is an I-type instruction. $rs is ignored. It can have any value.

Instruction B31-26 B25-21 B20-16 B15-0

 opcode register s register t immediate

lui $rt, immed 001 111 ignored - immed

The dashes are 5-bit encoding of the register number in UB. For

example, $r7 is encoded as 00111. The offset is represented in 16-bit 2C.

